A new class of triazepine-ruthenium(II) complexes: synthesis, crystal structure and NMR spectroscopic properties

Mustapha Aitali ${ }^{\text {a }}$, My Youssef Ait Itto* ${ }^{\text {a, }, ~ A i s a ~ H a s n a o u i ~}{ }^{\text {a }}$, Abdelkhalek Riahi ${ }^{\text {b }}$, Abdellah Karim ${ }^{\text {a }}$, Jean-Claude Daran* $\mathrm{c}, 2$
${ }^{\text {a }}$ Département de Chimie, Faculté des Siences, Semlalia, BP 2390 Marrakech, Morocco
${ }^{\text {b }}$ Laboratoire de Photochimie associe au CNRS, BP. 1039, F-51687 Reims Cedex 2, France
${ }^{\text {c }}$ Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France

Received 2 August 2000; accepted 12 September 2000

Abstract

Two unprecedented three-dimensional ruthenium(II) complexes I and II derived from 2-methyl-5-oxo-7-phenyl-3-thioxo-3,4,5,6-tetrahydro- $2 \mathrm{H}-1,2,4$-triazepine (HTAZO) and 2-methyl-7-phenyl-3,5-dithioxo-3,4,5,6-tetrahydro-2H-1,2,4-triazepine $\left(\mathrm{H}_{2}\right.$ TAZS) have been prepared by the reaction of these triazepines with $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ in the presence of triethylamine. NMR spectroscopic and X-ray diffraction studies of the structures of the resulting complexes reveal different behavior of HTAZO and H_{2} TAZS in the coordination process. © 2001 Published by Elsevier Science B.V. All rights reserved.

Keywords: Heterocycles; Triazepine; Ruthenium(II); X-ray analyses; NMR

1. Introduction

In recent years, heterocyclic systems have found wide application in organometallic chemistry. Thus a large number of complexes with heterocyclic molecules as ligands have been prepared [1-4]. These kinds of compounds act predominantly as chelates, giving versatile mono, bi or polynuclear complexes [5-8] having broad applicability in a wide range of reactions in organic synthesis $[2,5 b, 6,7,8]$. In spite of the frequent use of heterocyclic compounds as ligands, mainly with transition metals, complexes containing 1,2,4-triazepines are not known. This type of chelate which presents different coordination sites, could provide efficient catalysts with great conformational rigidity (Scheme 1).

2. Results and discussion

As part of our work in this field [9], we have prepared two unprecedented 1,2,4-triazepine-ruthenium(II)

[^0]complexes by reacting $\left[\mathrm{Ru}(p-\text { cymene }) \mathrm{Cl}_{2}\right]_{2}$ with HTAZO [10,11] (four equivalents) and H_{2} TAZS [10,11] (four equivalents) respectively, in the presence of an excess of triethylamine under 2-propanol reflux conditions.

We have found that, when HTAZO reacts with $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$, only one chlorine atom is removed leading productively and cleanly to formation of the mononuclear complex [$\mathrm{RuCl}(p$-cymene)TAZO] (I) [12]. However, with H_{2} TAZS, the two chlorine atoms are displaced from the complex precursor to afford readily a good yield of binuclear $[\mathrm{Ru}(p \text {-cymene }) \mathrm{TAZS}]_{2}$ (II).

The NMR spectroscopic data (Table 1) of these complexes suggest that both triazepines HTAZO and H_{2} TAZS were transformed before complexation, into the respective triazepinate ligands TAZO^{-}and

Table 1
Some pertinent ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ assignments (TMS standard, CDCl_{3} solvent, δ in ppm) of HTAZO, $\mathrm{H}_{2} \mathrm{TAZS}$ and the corresponding complexes

	HTAZO	Ru-TAZO (I)	HeTAZS
$\mathrm{H}-\mathrm{S}$	$8.62, \mathrm{br} \mathrm{s}, 1 \mathrm{H}$		$10.01, \mathrm{br} \mathrm{s}, 1 \mathrm{H}$
$\mathrm{H}-\mathrm{C}(6)$	$4.02, \mathrm{~s}, 2 \mathrm{H}$	$4.28, \mathrm{~s}, 2 \mathrm{H}$	
		$3.82, \mathrm{~d} 12.5 \mathrm{~Hz}, 1 \mathrm{H}$	
$\mathrm{H}-\mathrm{CN}(2)$	$3.75, \mathrm{~s}, 3 \mathrm{H}$	$3.48, \mathrm{~d} 12.5 \mathrm{~Hz}, 1 \mathrm{H}$	$3.81, \mathrm{~s}, 3 \mathrm{H}$
$\mathrm{C}(3)$	173.78	$3.52, \mathrm{~s}, 3 \mathrm{H}$	172.59
$\mathrm{C}(5)$	163.74	180.55	195.28
$\mathrm{C}(6)$	39.62	41.31	46.45
$\mathrm{C}(7)$	159.47	154.66	160.99
$\mathrm{C}-\mathrm{N}(2)$	46.17	43.66	47.66

(I)

Scheme 2.

H_{2} TAZS (A)
H_{2} TAZS (B)

$\left[\mathrm{RuCl}_{2} \text { (p-cymene) }\right]_{2}$

Scheme 3.

TAZS ${ }^{2-}$ via the pathways shown in Schemes 2 and 3. This behavior is similar to that we described for the
alkylation of these trazepines with mono and dihaloalkanes [11].

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of HTAZO and H_{2} TAZS show respectively a broad singlet at 8.62 ppm and 10.01 ppm corresponding to the SH group. Signals for the $\mathrm{H}_{2} \mathrm{C}(6)$ methylene group at 4.02 ppm (for HTAZO) and 4.28 ppm (for $\mathrm{H}_{2} \mathrm{TAZS}$) are also observed (Table 1). This reveals that both HTAZO and H_{2} TAZS exist in solution as the tautomeric form B (in solid state form A has been demonstrated [10]) (Schemes 2 and 3).

Upon binding of HTAZO to the metal, a typical AB system and a geminal coupling are observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for the $\mathrm{H}_{2} \mathrm{C}(6)$ group (Table 1). This indicates a rigid structure of the Ru-TAZO complex with less conformational flexibility compared to the free HTAZO triazepine (Table 1).

On the other hand, comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of HTAZO, H_{2} TAZS and their corresponding ruthenium complexes shows that coordination led to deprotonation of the ligands, as indicated by loss of the SH signal. Moreover, we observed for the complex II the disappearance of the $\mathrm{H}_{2} \mathrm{C}(6)$ methylene group signal and the appearance of a singlet at 7.04 ppm due to an ethylenic proton. This shows an additional deprotonation of the H_{2} TAZS triazepine leading to a coordination of the other sulfur atom in position 5 (Schemes 2 and 3).

In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$, participation of both triazepines $\mathrm{S}-\mathrm{C}(3)-\mathrm{N}(4)$ moiety is shown furthermore by downfield shift (average $\Delta \delta \sim 6 \mathrm{ppm}$) of the $\mathrm{C}(3)$ carbon atom. A shielding of $\mathrm{C}(7)$ and $\mathrm{C}(2)$ carbon atoms is also observed (Table 1).

After coordination of HTAZO, the changes in chemical shift of $\mathrm{C}(5)$ and $\mathrm{C}(6)$ carbon atoms are less pronounced $(\Delta \delta \sim 1-4 \mathrm{ppm})$. Remarkably, the H_{2} TAZS C(5) carbon atom is hardly shielded by about 24.64 ppm , while the $\mathrm{C}(6)$ signal is observed in the $\mathrm{H}-\mathrm{Csp}^{2}$ area $(\delta=120.11 \mathrm{ppm})$. These data reveal great modification in the electronic charge distribution of the H_{2} TAZS $\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)$ fragment which evolute from $\mathrm{S}=\mathrm{C}(5)-\mathrm{C}(6)$ towards $\mathrm{S}-\mathrm{C}(5)=\mathrm{C}(6)$ configuration. This

Fig. 1. Molecular structure of the dinuclear complex (Ru-TAZS) $)_{2}$ with atom labeling. Ellipsoids represent 50% probability.
is confirmed by the X-ray structural analyses: the $\mathrm{S}(5)$ $\mathrm{C}(5)$ bond length is $1.748(7) \AA$ (1.753(6) for molecule b) and the $\mathrm{C}(5)-\mathrm{C}(6)$ bond length is $1.377(9) \AA(1.354(9)$ for molecule b). Moreover the angles around $\mathrm{C}(5)$ are close to $120^{\circ}: \mathrm{S}(5)-\mathrm{C}(5)-\mathrm{C}(6)$ 121.7(5) ${ }^{\circ}$ (120.8(5) ${ }^{\circ}$), $\mathrm{S}(5)-\mathrm{C}(5)-\mathrm{N}(4) 117.3(5)^{\circ}\left(117.8(5)^{\circ}\right), \mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(4)$ $120.4(6)^{\circ}\left(121.0(6)^{\circ}\right)$.

In view of all these facts, we can state that while both sulfur atoms of H_{2} TAZS at $\mathrm{C}(3)$ and $\mathrm{C}(5)$ positions are coordinated to the metal, only that of HTAZO at C(3) position participates in the coordination. It is noteworthy to emphasize that the HTAZO $\mathrm{C}(5)$ oxo group is not involved.

3. Description of the structure

For the Ru-TAZS complex, the asymmetric unit is built up from two halves of the molecule and a CHCl_{3} solvent molecule. Each half is linked through the $\mathrm{S}(5)$ (or $S(105)$) atom to its related centrosymmetry counterpart thus resulting in the occurrence of two dinuclear complexes in the unit cell. The molecular structure of one of these dinuclear ruthenium complexes is shown with atoms labeling scheme in Fig. 1. Important bond lengths and angles are reported in Table 2. The TAZS ${ }^{2-}$ ligand exhibits an unprecedented $\mu-\kappa S, \kappa^{2} \mathrm{~N}, \mathrm{~S}$ coordination mode: the two sulfur atoms $S(3)$ and $S(5)$ and the nitrogen $\mathrm{N}(4)$ are indeed engaged in coordination with the Ru atoms. The nitrogen and $\mathrm{S}(3)$ form a four-membered chelate ring containing the ruthenium $\mathrm{Ru}(1)$ whereas the second sulfur atom $\mathrm{S}(5)$ is coordinated to the centrosymmetric related $\mathrm{Ru}(1)^{\prime}$. The $\mu-\kappa \mathrm{S}$, $\kappa^{2} \mathrm{~N}, \mathrm{~S}$ coordination mode has been previously observed in some di- and trinuclear (η^{6}-arene)ruthenium(II) complexes containing bridging heterocyclic thioamide [13] and in the polymeric cadmium(II) complex $\left[\mathrm{Cd}\left(\mathrm{mbt}^{2}\right] \mathrm{n}\right.$ [14]. However, in these cases, the three donating N,S,S atoms belong to two different ligands whereas in the title complex the two sulfur and the nitrogen atoms arise from the same TAZS^{2-} ligand. The bridging sulfur atoms ($\mathrm{S}(5)$ or $\mathrm{S}(105)$) lead to the formation of an eight-membered ring $\mathrm{Ru}(1)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(5)-$ $\mathrm{Ru}(1)^{\prime}-\mathrm{N}(4)^{\prime}-\mathrm{C}(5)^{\prime}-\mathrm{S}(5)^{\prime}$ which has a chair conformation (or a step like structure). It is indeed formed of three planes $\mathrm{Ru}(1)-\mathrm{S}(5)-\mathrm{S}(5)^{\prime}-\mathrm{Ru}(1)^{\prime}, \mathrm{Ru}(1)-\mathrm{N}(4)-$ $C(5)-S(5)$ and its centrosymmetric related one, with dihedral angle between them of $79.6(2)^{\circ}$. Although, such eight-membered ($\mathrm{M}-\mathrm{N}-\mathrm{C}-\mathrm{S}-\mathrm{M}-\mathrm{N}-\mathrm{C}-\mathrm{S}$) rings are rather commonly observed with chelating N,S containing ligands [15], the preferred conformation is boatshaped. To the best of our knowledge, only one example of a chair conformation for such a ring has been reported for bis(benzoylmethylthiopyridinium)-bis(triphenylphosphine)-di-silver(I) [16].

Table 2
Important bond lengths (\AA) and angles $\left({ }^{\circ}\right)$; e.s.d.s in parentheses refer to the last significant digit

Molecule a		Molecule b	
$\mathrm{Ru}(1)-\mathrm{N}(4)$	2.112(5)	$\mathrm{Ru}(2)-\mathrm{N}(104)$	2.116(5)
$\mathrm{Ru}(1)-\mathrm{C}(12)$	2.177(6)	$\mathrm{Ru}(2)-\mathrm{C}(22)$	2.179(7)
$\mathrm{Ru}(1)-\mathrm{C}(13)$	2.177(8)	$\mathrm{Ru}(2)-\mathrm{C}(23)$	2.182(7)
$\mathrm{Ru}(1)-\mathrm{C}(15)$	2.189(7)	$\mathrm{Ru}(2)-\mathrm{C}(25)$	2.179(8)
$\mathrm{Ru}(1)-\mathrm{C}(16)$	2.193(7)	$\mathrm{Ru}(2)-\mathrm{C}(26)$	2.162(7)
$\mathrm{Ru}(1)-\mathrm{C}(11)$	2.206(7)	$\mathrm{Ru}(2)-\mathrm{C}(21)$	2.203(7)
$\mathrm{Ru}(1)-\mathrm{C}(14)$	$2.208(7)$	$\mathrm{Ru}(2)-\mathrm{C}(24)$	2.198(7)
$\mathrm{Ru}(1)-\mathrm{S}(5) \# 1^{\text {a }}$	2.402(2)	$\mathrm{Ru}(2)-\mathrm{S}(105) \# 2$	2.400(2)
$\mathrm{Ru}(1)-\mathrm{S}(3)$	2.4343(19)	$\mathrm{Ru}(2)-\mathrm{S}(103)$	2.4227(19)
$\mathrm{S}(3)-\mathrm{C}(3)$	1.722(6)	S(103)-C(103)	$1.705(7)$
$\mathrm{S}(5)-\mathrm{C}(5)$	1.748(7)	S(105)-C(105)	1.753(6)
$\mathrm{S}(5)-\mathrm{Ru}(1) \# 1$	2.402(2)	$\mathrm{S}(105)-\mathrm{Ru}(2) \# 2$	2.400(2)
$\mathrm{N}(1)-\mathrm{C}(7)$	1.303(9)	$\mathrm{N}(101)-\mathrm{C}(107)$	1.278(9)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.464(8)	$\mathrm{N}(101)-\mathrm{N}(102)$	1.458(8)
$\mathrm{N}(2)-\mathrm{C}(3)$	1.414(8)	$\mathrm{N}(102)-\mathrm{C}(103)$	1.421(8)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.438(9)	$\mathrm{N}(102)-\mathrm{C}(102)$	1.446 (9)
$\mathrm{N}(4)-\mathrm{C}(3)$	1.307(8)	$\mathrm{N}(104)-\mathrm{C}(103)$	1.298(8)
$\mathrm{N}(4)-\mathrm{C}(5)$	1.403(8)	$\mathrm{N}(104)-\mathrm{C}(105)$	1.413(8)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.377(9)$	$\mathrm{C}(105)-\mathrm{C}(106)$	1.354(9)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.427(10)	$\mathrm{C}(106)-\mathrm{C}(107)$	1.462(10)
$\mathrm{C}(7)-\mathrm{C}(71)$	$1.507(10)$	$\mathrm{C}(107)-\mathrm{C}(171)$	$1.498(11)$
$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{S}(5) \# 1$	89.11(16)	$\mathrm{N}(104)-\mathrm{Ru}(2)-\mathrm{S}(105) \# 2$	87.03(16)
$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{S}(3)$	66.88(16)	$\mathrm{N}(104)-\mathrm{Ru}(2)-\mathrm{S}(103)$	66.48(16)
$\mathrm{S}(5)$ \# 1-Ru(1)-S(3)	81.05(7)	$\mathrm{S}(105) \# 2-\mathrm{Ru}(2)-\mathrm{S}(103)$	82.57(7)
$\mathrm{C}(3)-\mathrm{S}(3)-\mathrm{Ru}(1)$	79.2(2)	$\mathrm{C}(103)-\mathrm{S}(103)-\mathrm{Ru}(2)$	79.6(2)
$\mathrm{C}(5)-\mathrm{S}(5)-\mathrm{Ru}(1)$ \# 1	107.4(2)	$\mathrm{C}(105)-\mathrm{S}(105)-\mathrm{Ru}(2) \neq 2$	107.4(2)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{N}(2)$	113.4(6)	$\mathrm{C}(107)-\mathrm{N}(101)-\mathrm{N}(102)$	114.4(6)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(2)$	115.4(5)	$\mathrm{C}(103)-\mathrm{N}(102)-\mathrm{C}(102)$	114.0(6)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	108.0(5)	$\mathrm{C}(103)-\mathrm{N}(102)-\mathrm{N}(101)$	110.2(5)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{N}(1)$	108.7(5)	$\mathrm{C}(102)-\mathrm{N}(102)-\mathrm{N}(101)$	107.9(6)
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	122.9(5)	$\mathrm{C}(103)-\mathrm{N}(104)-\mathrm{C}(105)$	125.3(5)
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{Ru}(1)$	102.0(4)	$\mathrm{C}(103)-\mathrm{N}(104)-\mathrm{Ru}(2)$	101.8(4)
$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{Ru}(1)$	134.2(4)	$\mathrm{C}(105)-\mathrm{N}(104)-\mathrm{Ru}(2)$	132.5(4)
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{N}(2)$	121.5(6)	$\mathrm{N}(104)-\mathrm{C}(103)-\mathrm{N}(102)$	121.8(6)
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{S}(3)$	111.9(5)	$\mathrm{N}(104)-\mathrm{C}(103)-\mathrm{S}(103)$	112.1(5)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{S}(3)$	126.6(5)	$\mathrm{N}(102)-\mathrm{C}(103)-\mathrm{S}(103)$	126.1(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(4)$	120.4(6)	$\mathrm{C}(106)-\mathrm{C}(105)-\mathrm{N}(104)$	121.0(6)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(5)$	121.7(5)	$\mathrm{C}(106)-\mathrm{C}(105)-\mathrm{S}(105)$	120.8(5)
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(5)$	117.3(5)	$\mathrm{N}(104)-\mathrm{C}(105)-\mathrm{S}(105)$	117.8(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.8(6)	$\mathrm{C}(105)-\mathrm{C}(106)-\mathrm{C}(107)$	125.6(6)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	127.1(7)	$\mathrm{N}(101)-\mathrm{C}(107)-\mathrm{C}(106)$	127.9(7)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(71)$	114.3(6)	$\mathrm{N}(101)-\mathrm{C}(107)-\mathrm{C}(171)$	117.3(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(71)$	118.6(6)	$\mathrm{C}(106)-\mathrm{C}(107)-\mathrm{C}(171)$	114.7(7)

${ }^{\text {a }}$ Symmetry transformations used to generate equivalent atoms: \# $1-x,-y-z+1 ; \# 2-x+1,-y+1,-z+1$.

The geometry observed for the four-membered chelate ring compares well with the similar ring in the Ru-TZAO mononuclear complex (Fig. 2) and in some other related $\kappa^{2} \mathrm{~N}, \mathrm{~S}$ ruthenium chelates (Table 3). It is worth pointing out that the triazepine rings in complexes I and II present different conformations as shown by comparison of their torsional angles and bond distances (Table 4). The $\mathrm{C}(5)-\mathrm{C}(6)$ and $\mathrm{C}(6)-$ $\mathrm{C}(7)$ bond lengths of 1.522 and $1.491 \AA$ respectively, clearly indicate that the $\mathrm{C}(6)$ atom remains a methylene group as suggested by the NMR studies.

4. Experimental

2-Propanol (Aldrich) was distilled over magnesium under nitrogen atmosphere, triethylamine (Aldrich) was distilled over molecular sieve ($4 \AA$). $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ complex was prepared according to literature procedures [17]. Elemental analyses were performed by Laure Donnadieu-Noé on a Perkin-Elmer 2400 série II in the Laboratoire de Chimie de Coordination. HTAZO and H_{2} TAZS triazepines were synthesized by published methods [10,18].

4.1. HTAZO

M.p. ${ }^{177-178^{\circ} \mathrm{C}}$ (ethanol). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ $8.62[\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}], 7.54-7.82\left[\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right], 4.02[\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{C}(6)\right], 3.75\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CN}(2)\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta=173.78[\mathrm{C}(3)], 163.74[\mathrm{C}(5)], 159.47[\mathrm{C}(7)], 132.84$, 132.02, 129.19 and $127.34[\mathrm{C}-\mathrm{Ar}], 46.17[\mathrm{C}-\mathrm{N}(2)]$, 39.62 [C(6)]. Anal. Found (calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$): H 4.54 (calc. 4.6), C 56.63 (calc. 56.6), N 18.08 (calc. 18.08).

4.2. $\mathrm{H}_{2} \mathrm{TAZS}$

M.p. ${ }^{180-181}{ }^{\circ} \mathrm{C}$ (ethanol). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ 10.01 [br s, $1 \mathrm{H}, \mathrm{SH}], 7.94-7.43$ [m, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right], 4.28$ [s, $\left.2 \mathrm{H}, \quad \mathrm{H}_{2} \mathrm{C}(6)\right], \quad 3.81 \quad\left[\mathrm{~s}, \quad 3 \mathrm{H}, \quad \mathrm{H}_{3} \mathrm{CN}(2)\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta=195.28[\mathrm{C}(5)], 172.59[\mathrm{C}(3)], 160.99[\mathrm{C}(7)]$, 132.44, 132.12, 129.00 and 127.32 [C-Ar], 47.66 [C$\mathrm{N}(2)], 46.45 \quad[\mathrm{C}(6)]$. Anal. Found (Calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}_{2}$): H 3.74 (calc. 4.4), C 53.01 (calc. 53.0), N 16.85 (calc. 16.8).

4.3. General procedure for the synthesis of [Ru-triazepine] complexes

A mixture of $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$, 1,2,4-triazepine and triethylamine (molar ratio 1:4:8) in 2-propanol was heated at $80^{\circ} \mathrm{C}$ for 1 h under nitrogen atmosphere using standard Schlenk-type glassware. The orange-red solution was then concentrated to dryness and the resulting solid was treated with absolute ethanol. After filtration, from the resulting solution crystals of the product were obtained. X-ray measurements and NMR spectral data were performed on the crystalline product so obtained.

4.4. [RuCl(p-cymene)TAZO] (I)

70% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.34-7.85[\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$ triazepine], 5.58 [d $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} p$-cymene], $5.55\left[\mathrm{~d} 6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-p\right.$-cymene], $5.40[\mathrm{~d} 6.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-p$-cymene], 5.19 [d $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-p$ cymene], 3.82 [d $12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)$], 3.48 [d 12.5 Hz , $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)], 3.52\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CN}(2)\right], 2.83[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}$ p-cymene], 2.21 [s, 3H, H3 $\mathrm{C} p$-cymene], 1.22 [d 7.1 Hz ,
$3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C} p$-cymene], 1.18 [d $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C} p$ cymene]. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=180.55$ [C(3)], 164.73 [C(5)], 154.66 [C(7)], 133.67, 131.25, 128.81 and 127.32 [C-Ar triazepine], 102.68, 97.65, 81.89, 81.45, 80.81

Fig. 2. Molecular structure of the mononuclear complex (Ru-TAZO) with atom labeling.Ellipsoids represent 50% probability.

Table 3
Comparison of geometry for different $\kappa^{2} N, S$ ruthenium chelate rings

	Ru-TAZO	$(\text { Ru-TAZS })_{2}$	$[13]$
$\mathrm{Ru}-\mathrm{S}$	$2.446(3)(2.429(3))$	$2.434(2)(2.423(2))$	$2.427(3)$
$\mathrm{Ru}-\mathrm{N}$	$2.099(8)(2.095(8))$	$2.112(5)(2.116(5))$	$2.090(11)$
$\mathrm{S}-\mathrm{C}$	$1.731(10)$	$1.722(6)(1.705(7))$	$1.772(12)$
	$(1.724(10))$		
$\mathrm{N}-\mathrm{C}$	$1.342(13)$	$1.307(8)(1.298(8))$	$1.280(15)$
	$(1.310(13))$		
$\mathrm{S}-\mathrm{Ru}-\mathrm{N}$	$66.5(2)(67.2(2))$	$66.9(2)(66.5(2))$	$66.9(3)$
$\mathrm{Ru}-\mathrm{S}-\mathrm{C}$	$80.2(3)(79.0(3))$	$79.2(2)(79.6(2)$	$78.7(4)$
$\mathrm{S}-\mathrm{C}-\mathrm{N}$	$108.9(7)(111.5(7))$	$111.9(5)(112.1(5))$	$109.2(10)$
$\mathrm{Ru}-\mathrm{N}-\mathrm{C}$	$103.8(6)(102.3(6))$	$102.0(4)(101.8(4))$	$104.5(8)$

Table 4
Comparison of the torsional angles $\left({ }^{\circ}\right)$ and bond distances (\AA) within the triazepine rings for complexes I and II

	II (Ru-TAZS)	I (Ru-TAZO)
N1-N2-C3-N4	-76.77	-25.325
N2-C3-N4-C5	4.67	-26.030
C3-N4-C5-C6	37.81	0.647
N4-C5-C6-C7	-1.51	62.909
C5-C6-C7-N1	-38.09	-75.192
C6-C7-N1-N2	-2.47	4.914
C7-N1-N2-C3	71.11	53.584
N(1)-C(7)	$1.303(9)$	$1.257(12)$
N(1)-N(2)	$1.464(8)$	$1.406(12)$
N(2)-C(3)	$1.414(8)$	$1.354(14)$
N(4)-C(3)	$1.307(8)$	$1.342(13)$
N(4)-C(5)	$1.403(8)$	$1.364(12)$
C(5)-C(6)	$1.377(9)$	$1.522(14)$
C(6)-C(7)	$1.427(10)$	$1.492(14)$

and $80.14[\mathrm{C}-\mathrm{Ar} p$-cymene], $43.66[\mathrm{C}-\mathrm{N}(2)], 41.31$ [C(6)], $31.62\left[\mathrm{C}-\mathrm{Me}_{2} p\right.$-cymene], 22.54, 22.31 and 19.21 $\left[\mathrm{H}_{3} \mathrm{C} \quad p\right.$-cymene]. Anal. Found (calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{ORuS}$): H 4.74 (calc. 4.8), C 50.01 (calc. $50.1)$, N 8.26 (calc. 8.4).

4.5. [Ru(p-cymene)TAZS $]_{2}$ (II)

85% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.35-7.77[\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$ triazepine], 7.04 [s, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)\right], 5.60[\mathrm{~d} 5.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} p$-cymene], 5.35 [d $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-p$ cymene], 5.31 [d $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-p$-cymene], 5.27 [d $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-p$-cymene], 3.13 [s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CN}(2)\right]$, $2.85\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C} p\right.$-cymene], $2.19\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C} p\right.$ cymene], 1.18 [d $6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C} p$-cymene], 1.05 [d 6.8 $\mathrm{Hz}, 3 \mathrm{H}, \quad \mathrm{H}_{3} \mathrm{C} \quad p$-cymene]. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=$ $178.86[\mathrm{C}(3)], 170.64$ [C(5)], 160.40 [C(7)], 136.16, 129.87, 128.43 and 128.10 [C-Ar triazepine], 120.11 [C(6)], 102.05, 95.54, 88.45, 87.86, 82.84 and 82.53 [C-Ar p-cymene], $38.72[\mathrm{C}-\mathrm{N}(2)], 30.57\left[\mathrm{C}-\mathrm{Me}_{2} p\right.$ cymene], 23.20, 22.52 and 17.94 [$\mathrm{H}_{3} \mathrm{C} p$-cymene]. Anal. Found (calc. for $\mathrm{C}_{43} \mathrm{H}_{47} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{Ru}_{2} \mathrm{~S}_{4}$): H 3.15 (calc. 4.5), C 45.26 (calc. 47.8), N 8.12 (calc. 7.7).

4.6. X-ray crystallographic study

Suitable crystals were obtained by slow diffusion in a mixture of $\mathrm{CHCl}_{3}-\mathrm{EtOH}$. Data were collected on a Stoe IPDS diffractometer. The final unit cell parameters were obtained by the least-squares refinement of 5000 reflections. Only statistical fluctuations were observed in the intensity monitors over the course of the data collections.

The structure was solved by direct methods (SIR97 [19]) and refined by least-squares procedures on F^{2}. All H atoms attached to carbon were introduced in calculations in idealized positions $[d(\mathrm{CH})=0.96 \AA]$ and treated as riding models. One of the phenyl rings is disordered, the ring is oscillating between two positions roughly distributed around the axis going through $C(71)$ to $\mathrm{C}(74)$. This disordered ring was treated using the available tools in SHELXL-97 [20]. Least-squares refinements were carried out by minimizing the function $\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$, where F_{o} and F_{c} are the observed and calculated structure factors. The weighting scheme used in the last refinement cycles was $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+\right.$ $(a P)^{2}+b P$] where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. Models reached convergence with $R=\Sigma\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left(\left|F_{\mathrm{o}}\right|\right)$ and $w R_{2}=$ $\left\{\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right\}^{1 / 2}$, having values listed in Table 5.

The calculations were carried out with the sHELXL-97 program [20] using the integrated system WINGX(1.63) [21]. Molecular views were realized with the help of ORTEP [22]

Table 5
Crystal data and structure refinement for Ru-TAZS

Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{Ru}_{2} \mathrm{~S}_{4} \cdot \mathrm{CHCl}_{3}$
Formula weight	1084.60
Temperature (K)	160(2)
Wavelength (A)	0.71073
Crystal system	Triclinic
Space group	$P \overline{1}$
Unit cell dimensions	
$a(\mathrm{~A})$	10.742(2)
b (\AA)	14.595(3)
$c(\AA)$	14.842(3)
$\alpha\left({ }^{\circ}\right)$	99.88(3)
$\beta\left({ }^{\circ}\right)$	96.48(3)
$\gamma\left({ }^{\circ}\right)$	90.97(3)
Volume (${ }^{3}{ }^{3}$)	2276.2(8)
Z	2
Crystal size (mm^{3})	$0.15 \times 0.16 \times 0.08$
θ range for data collection (${ }^{\circ}$)	1.81-24.22
Index ranges	$\begin{aligned} & -12 \leq h \leq 12, \quad-16 \leq k \leq 16, \\ & -17 \leq l \leq 17 \end{aligned}$
Reflections collected	18423
Independent reflections	$6794\left[R_{\text {int }}=0.1097\right]$
Completeness to $\theta=24.22^{\circ}$ (\%)	92.7
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	6794/414/576
Goodness-of-fit on F^{2}	0.850
Final R indices [$I>2 \sigma(I)]$	$R_{1}=0.0457, w R_{2}=0.0752$
R indices (all data)	$R_{1}=0.1077, w R_{2}=0.0889$
Largest difference peak and hole (e \AA^{-3})	0.653 and -0.796

5. Supplementary material

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC147735. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: + 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

References

[1] For review see: A.K. Ghosh, P. Mathivanan, J. Cappiello, Tetrahedron: Asymmetry 9 (1998) 1.
[2] M. Wills, J. Chem. Soc. Perkin Trans. 1 (1998) 3101.
[3] J.E. Bol, B. Maase, G. Gonesh, W.L. Dressen, K. Goobitz, J. Reedijk, Heterocycles 45 (1997) 1477.
[4] (a) M. Ait Ali, S. Naili, I. Suisse, A. Mortreux, F. Agbossou, A. Karim, Tetrahedron Lett. 41 (2000) 2867. (b) M. Ait Ali, C. Mielet, A. Karim, A. Mortreux, Tetrahedron: Asymmetry 11 (2000) 1367.
[5] (a) J.S. Casas, M.V. Castana, E.E. Castellano, M.S. GarciaTasende, A. Sanchez, M.L. Sanjuan, J. Sordo, Eur. J. Inorg.

Chem. (2000) 83. (b) H. Brunner, B. Nuber, T. Tracht, Tetrahedron: Asymmetry 9 (1998) 3763. (c) M. Shi, G.-X. Lei, Y. Masaki, Tetrahedron Asymmetry 10 (1999) 2071. (d) D. Enders, H. Gielen, J. Runsuik, K. Breuer, S. Brode, K. Boehn, Eur. J. Inorg. Chem. (1998) 913.
[6] (a) Y. Carcia, P.J.V. Konnigsbruggen, H. Kooijman, A.L. Spek, J.G. Haasnoot, O. Kahn, Eur. J. Inorg. Chem. (2000) 307. (b) R.H. Bode, J.E. Bol, W.L. Driessen, F.B. Hulsbergen, J. Reedijk, A.L. Spek, Inorg. Chem. 38 (1999) 1239. (c) F. Adrian, M.I. Burguete, J.M. Fraile, J.I. Garcia, J. Garcia, E. Garcia-Espana, S.V. Luis, J.A. Mayoral, A.J. Royo, M.C. Sanchez, Eur. J. Inorg. Chem. (1999) 2347. (d) G. Bertrand, E. Diez-Barra, J. Fernandez-Baeza, H. Gornitzka, A. Moreno, A. Otero, R.I. Rodriguez-Curiel, J. Tejeda, Eur. J. Inorg. Chem. (1999) 1965. (e) D. Pfeiffer, M.J. Heeg, C.H. Winter, Angew. Chem. Int. Ed. Engl. 37 (1998) 2517. (f) M.P. Garcia, A.M. Lopez, M.A. Estuelas, F.J. Lahoz, L.A. Oro, J. Chem. Soc. Chem. Commun. (1988) 793.
[7] R.H. Bode, W.L. Driessen, F.B. Hulsbergen, J. Reedijk, A.L. Spek, Eur. J. Inorg. Chem. (1999) 505.
[8] For a recent review, see: (a) R. Kempe, Angew. Chem. Int. Ed. Engl. 39 (2000) 468. (b) D. Lucet, T. Legall, C. Mioskowski, Angew. Chem. Int. Ed. Engl. 37 (1998) 2580.
[9] (a) B. Abouhamza, L. El Firdoussi, S. Allaoud, A. Karim, A.F. Barrero, M. Quiros, Acta Crystallogr. Sect. C 55 (1999) 361. (b) L. El Firdoussi, S. Allaoud, A. Karim, A.F. Barrero, M. Quiros, Y. Kastanet, A. Mortreux, Acta Crystallogr. Sect. C 55 (1997) 710. (c) S. Allaoud, S. Conté, A. Karim, B. Fenet, B. Frange, Main Group Met. Chem. 18 (1995) 21. (d) A. Chiaroni, C. Riche, L. El Firdoussi, A. Benharref, A. Karim, Acta Crystallogr. Sect. C 49 (1993) 365. (e) A. Thozet, S. Allaoud, T. Zair, A. Karim, B. Frange, J. Organomet. Chem. 406 (1991) 269.
[10] M.Y. Ait Itto, A. Hasnaoui, P. Toledano, Acta Crystallogr. Sect. C 51 (1995) 2066.
[11] M.Y. Ait Itto, A. Hasnaoui, A. Riahi, J.-P. Lavergne, Tetrahedron Lett. 38 (1997) 2087.
[12] M. Ait Ali, M.Y. Ait Itto, A. Hasnaoui, A. Riahi, A. Karim, S. Garcia-Granda, A. Gutierres-Rodriguez, Acta Crystallogr. Sect. C (2000) electronic paper, Data Validation Number IUC0000163.
[13] W.S. Sheldrick, C. Landgrafe, Inorg. Chim. Acta 208 (1993) 145.
[14] M.B. Hursthouse, O.F.Z. Khan, M. Mazid, M. Motevalli, P. O'Brien, Polyhedron 9 (1990) 541.
[15] (a) N. Zhang, S.R. Wilson, P.A. Shapley, Organometallics (1988) 7. (b) S.P. Abraham, N. Narasimhamurthy, M. Nethaji, A.G. Samuelson, Inorg. Chem. 32 (1993) 1739. (c) E. Colacio, R. Cuesta, M. Ghazi, M.A. Huertas, J.M. Moreno, A. Navarrete, Inorg. Chem. 36 (1997) 1652.
[16] J. Vicente, M.-T. Chicote, S. Huertas, M.C. Ramirez de Arellano, P.G. Jones, Eur. J. Inorg. Chem. (1998) 511.
[17] (a) M.A. Bennett, A.K. Smith, J. Chem. Soc. Dalton Trans. (1974) 233. (b) M.A. Bennett, T.W. Matheson, G.B. Robertson, A.K. Smith, P.A. Tucker, Inorg. Chem. 19 (1980) 1114.
[18] A. Hasnaoui, J.-P. Lavergne, P. Viallefont, Heterocyclic Chem. 15 (1978) 71.
[19] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagn, J. Appl. Crystallogr. 32 (1999) 115.
[20] G.M. Sheldrick, SHELX-97, Programs for Crystal Structure Analysis (Release 97-2), Institüt für Anorganische Chemie der Universität, Göttingen, Germany, 1998.
[21] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[22] M.N. Burnett, C.K. Johnson, ortep-III, Report ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN,1996.

[^0]: ${ }^{1}$ * Corresponding author.
 2 *Corresponding author.

